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Abstract

The spectral transform method is a standard numerical technique for solving partial
differential equations on the sphere and is widely used in global climate modeling. In
this paper, we outline different approaches to parallelizing the method and describe
experiments that we are conducting to evaluate the efficiency of these approaches on
parallel computers. The experiments are conducted using a testbed code that solves the
nonlinear shallow water equations on a sphere, but are designed to permit evaluation
in the context of a global model. They allow us to evaluate the relative merits of
the approaches as a function of problem size and number of processors. The results
of this study are guiding ongoing work on PCCM2, a parallel implementation of the
Community Climate Model developed at the National Center for Atmospheric Research.

1 Introduction

Parallel algorithms for computing the spectral transform method used in climate models can
be divided into two general classes. Transform algorithms employ a single decomposition
of the principal data structures and use parallel Legendre transforms (LTs) and fast
Fourier transforms (FFTs) to communicate data among the different partitions. An
algorithm of this type is being used to construct a parallel implementation [4] of the
National Center for Atmospheric Research’s Community Climate Model (CCM2) [13]. In
contrast, transpose algorithms use different data decompositions at different stages of the
computation, permitting the L'Ts and FFTs to proceed without communication. Parallel
matrix transpose operations are used to move between the different decompositions. An
algorithm of this type has been used at the European Center for Medium-Range Weather
Forecasts to execute their production spectral model on an eight-processor Cray Y/MP [2].
Hybrid algorithms, in which for example a transpose FF'T is combined with a parallel LT,
are also possible.

A comprehensive comparison of these two approaches to the parallel implementation
of the spectral transform method has not previously been attempted. In this paper, we
describe analytic and empirical studies intended to provide a detailed understanding of the
relative efficiency of the two approaches as a function of both problem size and machine
characteristics. This work focuses on mesh-connected multicomputers with cut-through
routing, such as the Intel Delta and Paragon computers. However, it is easily extended
to other parallel computer architectures. An important goal of this work is to evaluate
potential refinements to the parallel implementation of CCM2 currently under development
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at Argonne and Oak Ridge National Laboratories as part of the Department of Energy
CHAMMP initiative [3]. Hence, we also discuss other issues that must be considered when
applying the results of this study to parallel implementations of climate models.

2 Spectral Transform Method

In the spectral transform method, state variables are transformed at each timestep between
the physical domain, where most of the physical forces are calculated, and the spectral
domain, where the terms of the differential equation are evaluated. In the codes that we
consider, the time update and all coupling between vertical layers are calculated in physical
space. The spectral representation of a state variable £ on a given vertical layer above the
surface of a sphere is defined by an approximation to the variable by a truncated series of
spherical harmonic functions,

M N(m) |
)= D D NPT (n)e™,

m=—M n=|m|

where p = sin 6, 6 is latitude, A is longitude, and P/"(u) is the associated Legendre function.
In the physical domain, state variables are approximated on an I x J longitude-latitude
grid. Transforming from physical coordinates to spectral coordinates involves performing an
FFT for each line of constant latitude, followed by integration over latitude using Gaussian
quadrature to obtain the spectral coefficients,

J-1
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where (™ is the mth Fourier coefficient, and w; is the Gaussian quadrature weight
corresponding to Gaussian latitude p;. The point values are recovered from the spectral
coeflicients by computing

N(m)
)= > ETPM(p)

n=|m|

for each m, followed by FF'Ts to calculate £(A, p).

When the spectral transform method is applied in a global climate model, the principal
data structures are as shown in Figure 1. In this figure we assume that N(m) = M and
P denotes physical space, F' Fourier space, 5 spectral space, and z the number of vertical
layers in the model.
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3 Parallel Transform Algorithms

Parallel transform algorithms decompose the principal data structures by latitude and
longitude. Parallel implementations of the FFT and LT are then required. The parallel
Fourier transform algorithm used in this work [14] extends the conventional power-of-
two parallel FFT algorithm by performing two block transforms concurrently to overlap
computation with communication.

We consider two alternative algorithms for the parallel LT [4]. The first,
ring-pipeline, uses a pipeline algorithm over a logical ring of processors to overlap com-
munication with computation during the LT. The second, gadd, computes as much as
possible locally before calling a fast global vector sum routine to finish the computation.
ring-pipeline partitions the spectral domain equally while subsets of processors “share”
the same spectral coefficients in gadd. In consequence, some computation in the spectral do-
main is calculated redundantly in gadd, but the calculation of {£™ ()} from {7} requires
no interprocessor communication because all necessary information is available locally.

4 Parallel Transpose Algorithms

Transpose algorithms for the spectral transform employ matrix transpose operations to
move between alternative decompositions of basic data structures, so that the FFTs and LTs
do not involve communication. This approach is illustrated in Figure 2, in which the data
allocated to a single processor at different stages of the computation is shaded. Initially, the
physical space variables are decomposed by latitude and longitude so that computations
involving vertical dependencies can proceed without communication. A transpose is then
performed to obtain a decomposition by latitude and vertical layer, allowing the FFTs to
proceed without communication. A second transpose provides a decomposition by longitude
and vertical layer, allowing the LT to proceed without communication. Reverse transposes
are then performed to return to the original decomposition.

On p X g processors, the first transpose involves ¢ independent p-processor transposes,
while the second requires p independent g-processor transposes.

5 Performance Models
We have developed detailed performance models for the parallel transpose and transform
algorithms. Because of space constraints, we are able to sketch only some aspects of these
models here.

In previous work, we have shown that the communication costs for a parallel Fourier
and ring-pipeline Legendre transform of r data elements can be approximated as follows [6]:

N/
P

(1) Offt =15 10gp + thQ(\/ﬁ — 1) + t,2r
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(2) 0, =(p—1) (ts—l—th—l—twg).

In these expressions, p is the number of processors and the parameters t,, t5, and t,,
represent message startup costs, per-hop costs, and per-word costs in a mesh-connected
distributed-memory parallel computer with cut-through routing. The FFT performance
model assumes that competition for bandwidth in a two-dimensional mesh computer
increases the transfer costs from logp to /p.

A matrix of r data elements partitioned among p processors can be transposed in
p — 1 communication steps per processor, each involving r/p? data elements. In a
mesh architecture, the average distance traveled is about ,/p. Hence, in the absence of
competition for bandwidth we can approximate the total communication cost by

(p—1) (ts + /P + tw]%) .

Competition for bandwidth must be taken into account. In p — 1 communication
steps, a total of approximately p(p — 1),/p hops must be traversed (as p processors are
communicating). As there are only 4p communication links available at each step, we have
an average of \/p/4 messages per link. Scaling the number of words to be communicated
by this amount, we arrive at an approximate communication cost for a single transpose of

(3) (p—1) (ts SN twﬁ) .

This analysis provides a lower bound on the cost of performing a transpose on a 2-D
mesh. This lower bound can be achieved only if we can define a communication schedule
that allows p processors to perform a transpose in p'*®/4 phases without contention. Scott
provides a constructive proof that such a schedule exists in an p X p mesh with p a multiple
of four [11], demonstrating that this lower bound is achievable.

An alternative transpose algorithm performs the transpose in logp steps [9]. This
performs fewer communications but transfers more data and must perform additional
copying. The algorithm can be expected to be faster in situations where message startup
costs dominate: for example, on clustered workstations or on small problems.

6 Empirical Studies

Although analytic models can provide interesting insights into performance issues, empirical
studies are required to calibrate and validate models. To permit a fair comparison of the
suitability of the transpose and transform algorithms for general circulation models such
as CCM2, we have incorporated the various algorithms in a single testbed code with a
structure similar to that of CCM2.

6.1 STSWM: An Algorithm Testbed

Our testbed code is based on the sequential FORTRAN code STSWM developed by J.
Hack and R. Jacob of NCAR for numerical studies of the shallow water equations [8].
STSWM uses the spectral transform method to solve the nonlinear shallow water equations
on a sphere. The nonlinear shallow water equations constitute a simplified atmospheric-
like fluid prediction model that exhibits many of the features of more complete models.
They are frequently used to investigate and compare numerical methods [1]. An important
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characteristic from our point of view is that STSWM’s data structures and implementation
of the spectral transform algorithm are based directly on equivalent structures and
algorithms in CCM2.

The parallel testbed code differs from STSWM in one major respect: vertical layers
have been added to permit a fair evaluation of the transpose algorithms. This is necessary
because in a one-layer model, a parallel transpose algorithm reduces to a one-dimensional
decomposition of each domain (see Figure 2) and hence can utilize only a small number
of processors. The addition of vertical layers also has the advantage of modeling more
accurately the granularity of the dynamics computation in CCM?2. In all other respects we
have changed STSWM as little as possible. In particular, we have not changed loop and
array index ordering. Although such changes could probably improve performance of some
algorithms, our goal was to have a code as similar to CCM2 as possible.

The testbed code is structured so that a variety of different parallel algorithms can
be selected by runtime parameters and/or compile-time switches. The FFT can be
implemented by using a parallel transform, an O(p) transpose, or an O(log p) transpose.
The LT can be implemented using a ring-pipeline transform, a gadd transform, an O(p)
transpose, or an O(log p) transpose. Hence, there are a total of twelve different algorithms
to be compared.

In some of the algorithms, we are interested in exploring several different mappings
of data to processors. Hence, we specify the mapping of “logical processors” to “physical
processors” in a separate routine. This use of information-hiding techniques [5] makes it
straightforward to explore alternative mappings. We use a similar technique to simplify the
implementation of the three-dimensional transpose: a vector of processor numbers passed
as an argument to a two-dimensional transpose code specifies the processors involved in a
particular transpose operation.

6.2 Experimental Method

Computational experiments are being performed to compare the twelve algorithms. These
experiments are designed to identify if and when one algorithm is superior to another as a
function of problem size, number of processors, and underlying machine topology. They will
also provide the data required to validate and improve our performance models. This will
allow us to make meaningful performance predictions for future parallel computers (e.g.,
the 2048-processor Intel Paragon to be installed at Oak Ridge National Laboratory) and
for related codes with somewhat different computational characteristics (e.g., the NCAR
Community Climate Model).

The testbed code is implemented using PICL [7], a portable message-passing library
that incorporates instrumentation. This provides portability between Intel and NCUBE
multiprocessors and allows the collection of data for performance studies. In addition, we
are using the PICL emulation mode in W. Gropp’s portable Chameleon package, both to
develop the testbed programs on a workstation and to execute the parallel code on machines
to which PICIL has not yet been ported.

6.3 Results

We report results obtained in two preliminary experiments intended to validate aspects of
the parallel transform and transpose performance models.

The first study explores the accuracy of the LT model, Equation 2. We fit a performance
model comprising Equation 2 plus a characterization of sequential computation time to
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runtimes obtained using an early version of the testbed code [15]. These experiments were
conducted on a 128-processor Intel iPSC/860 computer. Figure 3 shows the fit obtained
using the following values for t,, t5, and ¢,,, with observed speedup indicated by points and
predicted speedup by solid lines, for a variety of different problem sizes:

ts +{p = 230 psec, t,, = 1.2 usec.

Because the time complexity for the floating-point computation contains terms with the
same asymptotic form as the principal communication terms, it is impossible to determine
an exact correspondence between the i4,t;, and ¢, values obtained by fitting and the
“best achievable” communication parameters observed on the Intel iPSC/860 by other users
(ts = 136usec, t, = 2.0usec, t,, = 1.6usec). However, the similarities in the values give
us confidence that our model is accurate and the parallel implementation is efficient. The
disparities may be artifacts of the fitting process or may reflect additional operations (e.g.,
buffer formatting and management) or optimizations (e.g., overlapping of communication
and computation) not dealt with by the model.

The second performance study explores the accuracy of the parallel transpose per-
formance model, Equation 3. We fit this model to runtimes obtained using a transpose
code on the 528-processor Intel Delta computer. This code performs a transpose of a two-
dimensional array using the O(p) algorithm. Figure 4 shows the fit obtained using the
following values for ¢, ¢, and t,,, with observed speedup indicated by points and predicted
speedup by solid lines, for a variety of different problem sizes:

t, = 150 psec, tp = 0.2 psec, 1, = 0.32 psec.
These results compare well with communication parameters observed in simpler testbed

codes on the Delta: ¢; = 100usec, t;, = 0.05usec., and t,, = 0.32usec. The mismatch
between predicted and observed times at high processor counts may be due to contention.
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7 Discussion

The development of a testbed code such as the parallel STSWM raises interesting design
issues. Qur primary motivation in developing this code is to obtain insights into the relative
merits of different parallel algorithms and hence to provide guidance to developers of parallel
spectral climate models. In order for the results of our experiments to be meaningful, we
must take care that all algorithms are (a) optimized to more or less the same level, and (b)
implemented in a way that is consistent with the data structures used in spectral climate
models. Here, we discuss other issues that must be addressed when selecting algorithms
for use in a parallel climate model.

A potentially significant advantage of the parallel transpose algorithm is that it is able
to use sequential FIF'T and LT libraries optimized (perhaps using assembly code) for a
particular processor. In contrast, a parallel transform algorithm must use custom parallel
FFT and LTs such as those described in [15, 14], which are less likely to be assembly coded.
From a scientific viewpoint, a fair comparison of the two algorithms should probably forbid
use of optimized sequential libraries. However, potential users of these algorithms will
certainly be interested in results obtained with optimized libraries.

The parallel FFT described in [14] can deal only with power-of-two vectors. A non-
power-of-two parallel FFT has been developed by David Semeraro, based on the Bluestein
algorithm [12], but is considerably less efficient. The gadd and O(log p) transpose algorithms
are also more efficient when applied to power-of-two problems. In contrast, the O(p)
transpose algorithm can operate on matrices of any size with equal efficiency. A complete
algorithm comparison should include results for both power-of-two and non-power-of-two
problems.

The ring-pipeline LT algorithm has been shown in previous work to be somewhat
more efficient than the gadd algorithm on the Intel iPSC/860. However, the latter algorithm
is easier to implement in a parallel climate model. Hence, it is important not only to
quantify the performance difference between the two algorithms but also to describe clearly
what is involved in implementing each algorithm.
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Load imbalances can occur in climate models as a result of variations in the cost
of approximating physical processes such as radiation and convection [10]. These load
imbalances can be corrected by dynamically redistributing data prior to calling the relevant
routines, which operate on data stored in physical space. This redistribution appears
cheaper to perform in a transpose code. Hence, a complete algorithm comparison should
perhaps investigate the relative costs of redistribution.

The various algorithms are able to use differing numbers of processors. If one assumes
a computational grid of size Nyt X Nipn X Nyer, a pure transform algorithm constructed
with the parallel FFT can use at most (Ny,,/4) X (Njq/2) processors. A pure transpose
algorithm can use at most (Nyu¢/2) X Ny processors. A typical problem size for a parallel
climate model might be Ny, = 128, Ny,,, = 256, and N,., = 17; at this resolution, a pure
transform code is able to use 4096 processors, while the transpose code can use only 1088.
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